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Muscle fibres are very specialised cells with a complex structure that requires a high level of organisation of the
constituent proteins. For muscle contraction to function properly, there is a need for not only sarcomeres, the
contractile structures of the muscle fibre, but also costameres. These are supramolecular structures associated
with the sarcolemma that allow muscle adhesion to the extracellular matrix. They are composed of protein
complexes that interact and whose functions include maintaining cell structure and signal transduction mediated
by their constituent proteins. It is important to improve our understanding of these structures, as mutations in
various genes that code for costamere proteins cause many types of muscular dystrophy. In this review, we
provide a description of costameres detailing each of their constituent proteins, such as dystrophin, dystrobrevin,
syntrophin, sarcoglycans, dystroglycans, vinculin, talin, integrins, desmin, plectin, etc. We describe as well the
diseases associated with deficiency thereof, providing a general overview of their importance.

Introduction
The concept of the costamere as a morphological struc-
ture in striated muscle was first introduced by Pardo
et al. in 1983 (Ref. 1). The observation under an elec-
tron microscope of protein bands perpendicular to the
longitudinal axis of the muscle fibre, reminiscent of
ribs (‘costa’ in Latin), led them to coin the name cost-
amere (Ref. 1). It was found that these structures are
located at the subsarcolemmal level, aligned with the
myofibril Z-discs (Refs 1, 2, 3). Similar structures are
oriented transversely over the M lines of the contractile
apparatus and oriented parallel to the long axis of the
myofibre (Ref. 4) (Fig. 1).

Functions of costameres
Possible functions of costameres may include the
assembly and stabilisation of sarcomeres (Refs 1, 5, 6).
Specifically, these protein complexes, associated with
the sarcolemma, enable muscle adhesion to the extra-
cellular matrix (Ref. 7) and provide mechanical
linkage. This linkage both distributes contractile
forces from the sarcomere to the basal lamina
(‘inside-out’) (Refs 5, 6) and transmits externally
applied forces to the extracellular matrix inside the
myocytes (‘outside-in’) (Ref. 8). Given this, it could
be expected that defects in costameres would com-
promise muscle strength directly. These defects
would reduce the efficiency of the transmission of
lateral forces, and/or indirectly, increase the likelihood

of damage to the sarcolemma, resulting in degeneration
or death of the myofibre (Ref. 4).
The process of sarcomere assembly is complex and

remains poorly understood (Ref. 9). In the initial
stages of assembly, there are small aggregates asso-
ciated with the membrane, known as Z-bodies, which
will mature into Z-discs (Ref. 10). Integrins, α-actinin
and the constituents of binding sites for integrin, vincu-
lin and talin are the first proteins that can be observed
with a periodic pattern in the plasma membrane
(Refs 11, 12). There is abundant evidence suggesting
that integrin-binding sites are where myofibril assem-
bly starts in vivo. Sparrow and Schock (Ref. 13) sug-
gested that, within the myofibril maturation process,
protocostameres are the site of early integrin binding
and, hence, of the initiation of myofibril assembly,
although other authors proposed an alternative model
based on the assembly of multiple latent protein com-
plexes (Ref. 9).
The correct alignment of costameres with the Z- and

M-lines is dependent on other structures in the network
of filamentous proteins of the cytoskeleton, namely, the
family of the intermediate filaments (IFs) (Refs 14, 15).
These are responsible for binding between the sarco-
lemma and the myofibrils adjacent to the Z-lines
(Refs 16, 17, 18) and presumably also the M-lines
(Refs 16, 19). Desmin, together with other associated
proteins, synemin and paranemin, form the IFs of the
Z-lines (Refs 20, 21) (Fig. 1). The complex process
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of assembly is genetically regulated by a specific
process that involves transcription factors: myocyte
enhancer factor-2 (MEF2), serum response factor
(SRF) and histone deacetylase (Ref. 22).
First, MEF2 is a transcription factor (Refs 23, 24, 25)

required for the terminal differentiation of cardiac, skel-
etal and smooth muscle (Refs 26, 27, 28). MEF2A, in
particular, plays an essential role in muscle regener-
ation in adult mice through direct regulation of
the microRNA cluster, the Gtl2–Dio3 locus. A subset
of the Gtl2–Dio3 miRNAs represses secreted
Frizzled-related proteins, inhibitors of Wnt signalling
(Ref. 29). Second, SRF is a broadly expressed tran-
scription factor with an essential role in the differenti-
ation of mesoderm-derived tissues, such as muscle
(Ref. 30). In floxed SRF mice, there is dysregulation
of genes encoding costamere, sarcomere and numerous
other cytoskeletal proteins (Ref. 31), such as dys-
trophin, α-dystrobrevin, integrin β1, melusin and
β-sarcoglycan (Ref. 22).
As well as gene regulation through transcription

factors, mechanical stimuli play an important role in
regulating the expression of costamere components
(Refs 32, 33, 34, 35, 36), their level of expression
also varying between fibre types (Refs 17, 37, 38, 38,
39, 40, 41).
To summarise, the assembly of sarcomere proteins is

a highly regulated, complex and delicate process,

depending on many factors, and abnormalities in
these factors, for example, as a result of mutations of
genes coding for some of their components, produce
a range of different myopathic processes (listed in
Table 1). Below, we describe the main constituent pro-
teins of costameres, their location within the cell and
their involvement in these myopathic processes.

Main components of costameres

Costameres are principally composed of two com-
plexes, the dystrophin–glycoprotein complex and the
vinculin–talin–integrin system. Both regulate the inter-
action between the cytoskeleton and the extracellular
matrix in skeletal muscle in adults (Ref. 42).
The intracellular actin fibres, which are part of the

contractile apparatus, are bound to laminin of the extra-
cellular matrix by dystrophin (Refs 43, 44, 45, 46).
Integrin α7β1, a transmembrane laminin receptor,
also helps to link the extracellular matrix and the cyto-
skeleton (Refs 47, 48, 49) (Fig. 1).
In addition to the aforementioned two complexes,

other proteins, including desmin, plectin and melusin,
are involved and these are described in more detail
below.

The dystrophin–glycoprotein complex (DGC)

This structural unit is composed of dystrophin and a
series of proteins (dystroglycans α and β, sarcoglycans

Schematic representation of proteins forming costamere in skeletal muscle
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Schematic representation of proteins forming costamere in skeletal muscle. FAK, focal adhesion kinase; ILK, integrin-linked kinase; PINCH,
particularly interesting cysteine- and histidine-rich protein.
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TABLE 1

MUSCLE DISORDERS BECAUSE OF MUTATIONS OF GENES CODING COSTAMERE COMPONENTS

Gene/protein Myopathic features Allelic variants or associated (extended) phenotypes

1- Dystroglycan complex (DGC)

1.1. Sarcoplasmic subcomplex

DMD

Dystrophin

Progressive proximal muscular
weakness with characteristic
pseudohypertrophy of the calves and
cognitive impairment.
Bulbar (extraocular) muscles spared
but the myocardium is affected.
Massive elevation of creatine kinase
levels in the blood, myopathic
changes by electromyography, and
myofibre degeneration with fibrosis
and fatty infiltration on muscle
biopsy

Duchenne muscular dystrophy (DMD), because of the total absence of
dystrophin. Onset occurs between 3 and 5 years of age with a progressive
loss of muscle strength. Patients stop being able to walk at 11–13 years old
and die around the 3rd decade of life, often because of respiratory failure
(Refs 45, 55, 145)

Becker muscular dystrophy (BMD) is an allelic variant, in which patients
have mutations in the dystrophin gene. Deletions identified in BMD
patients are shown to maintain the translational ORF for amino acids and
predict a shorter, lower molecular weight protein. The smaller protein
product is presumed to be semifunctional and to result in a milder clinical
phenotype (Refs 146, 147)

X-linked dilated cardiomyopathy (or dilated cardiomyopathy 3B), secondary
to mutations in dystrophin coding gene (Ref. 148)

Intermediate muscular dystrophy, a phenotype between DMD and DMB
(Ref. 149)

Asymptomatic carriers and symptomatic female carriers (Refs 150, 151)

DTNA

Dystrobrevin
–

Noncompaction of left ventricular myocardium with congenital heart defects
(Ref. 62)

Autosomal-dominant familial Meniere’s disease (Ref. 152)

STNA1

Syntrophin
–

Case of a patient with long QT syndrome with a mutation in the gene coding
for α−1 syntrophin (STNA1) (Ref. 67)

1.2. Sarcoglycan subcomplex

SGCA, SGCB,
SGCG, SGCD
and SGCZ
α, β, γ, δ, ε and ζ-
sarcoglycans

Slowly progressive proximal muscle
weakness impeding patients’ ability
to walk during adolescence in most
cases. Similar clinical picture to
DMD with an onset in childhood, but
broader clinical spectrum and onset
in adulthood in some cases

Limb-girdle muscular dystrophy (LGMD) 2C: γ-sarcoglycanopathy
(Ref. 73), common in Maghrebian populations (Ref. 153, 154) and among
gypsies (Ref. 155)

LGMD2D: caused by mutations in the α-sarcoglycan gene (Ref. 156)
LGMD2E: caused by mutations in β-sarcogycan coding gene are responsible

for LGMD2E (Ref. 157) This LGMD was found in affected members of
several Amish families (Ref. 158)

LGMD2F: δ-sarcoglycanopathy (Ref. 159)
As well as LGMD2F, mutations in the gene coding for δ-sarcoglycan may
lead to dilated cardiomyopathy 1L (CMD1L) (Ref. 160)

Mutations in the gene coding for ε-sarcoglycan (SGCE) have also been
described in patients with myoclonus-dystonia syndrome (Ref. 161)

No disorders have been associated with the gene that codes for ζ-sarcoglycan
(Ref. 162)

1.3. Dystroglycan subcomplex

DAG1

Dystroglycan 1

Girdle myopathy affecting the central
nervous system

Muscular dystrophy-dystroglycanopathy (limb-girdle), type C9, muscular
dystrophy-dystroglycanopathy (limb-girdle), type C9 (Ref. 79)

Abnormal glycosylation of DAG1 results in several forms of congenital
muscular dystrophy, ranging phenotypically from severe forms with brain
and eye anomalies to milder limb-girdle types, for further information
please see http://www.musclegenetable.fr

2- Vinculin-talin-integrin system

VCL

Vinculin

Dilated cardiomyopathy type 1W (Ref. 88)
Familial hypertrophic cardiomyopathy-15 (Ref. 89)

TLN1/TLN2

Talin
–

ITGA7
Integrin α7

ITGA9
Integrin α9

Congenital myopathy with hypotonia

Integrin α7-deficient congenital muscular dystrophy: Mild congenital
myopathy with delayed motor milestones. Torticollis and congenital
dislocation of the hip. Intellectual impairment in one case (Ref. 99)

Congenital muscular dystrophy with joint hyperlaxity: Patients hypotonic
and present contractures at birth. Muscle weakness is generalised and
slowly progressive. Contractures are proximal at the ankle, knee and
shoulder (Ref. 100)

Continued
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α−ε, sarcospan, syntrophins α1, β1 and β2, and two iso-
forms of a subsarcolemmal protein, α-dystrobrevin-1
and -2) that form a complex for binding cytoplasmic
myofibrillar contractile elements and proteins of the
extracellular matrix, providing structural support to
the sarcolemma (Refs 50, 51). Other more peripheral

components of the complex include neuronal nitric
oxide synthase (nNOS), caveolin-3 and laminin α−2
(Refs 42, 52).
In the relation to the DGC complex, three sub-

complexes can be identified, on the basis of different
biochemical characteristics and localisation: the

Table 1 Continued

Gene/protein Myopathic features Allelic variants or associated (extended) phenotypes

COL6A1
COL6A2
COL6A3
Collagen VI

Muscle weakness and contractures,
associated with variable degrees of
joint hyperlaxity

Ullrich congenital muscular dystrophy (UCMD), the most severe form of
collagen VI disorders, is characterised by early onset and proximal joint
contractures associated with striking distal hyperlaxity. The orthopedic
deformities and respiratory impairment, with diaphragm failure, generally
develop within the first decade of life and are life-threatening in the most
severe cases (Ref. 103)

Bethlem myopathy (BM) characterised by early contractures of finger
flexors, wrist, elbows and ankles. Respiratory failure and distal
hyperlaxity are usually absent or are milder than in UCMD, although the
latter may occur only in very young children with BM (Refs 103, 104)

Myosclerosis myopathy (Ref. 105)

3- Other proteins associated with costameres

3.1. Integrin-associated proteins

ILK
Integrin-linked
kinase
ITGB1BP2
Melusin

Severe dilated cardiomyopathy (Ref. 118).

One patient with dilated cardiomyopathy (Ref. 119)

PARVA/PARVB/
PARVG
Parvin

–

PINCH1/
PINCH2
PINCH

Early onset LGMD

LGMD2W: caused by mutations in the LIMS2/ PINCH2 gene. Childhood
onset LGMD with macroglossia and calf enlargement. Development of
decreased ejection fraction with global left ventricular dysfunction in 3rd
decade of life, and severe quadriparesis with relative sparing of the face,
but characteristically a broad based triangular tongue (Ref. 117)

PTK2
FAK

FAK deficiency in cells contributing to the basal lamina results in cortical
abnormalities resembling congenital muscular dystrophies (Ref. 163)

FERMT1, 2 and 3
Kindlin 1, 2 and 3

– Mutations in kindlin 1 and 3 found in patients affected by skin and immune
disorders respectively (Refs 164, 165)

3.2. Desmin network via plectin

DES
Desmin

Limb-girdle myopathy, distal
myopathy or both

LGMD1E, also known as dilated cardiopathy type 1F: dilated
cardiomyopathy and conduction defects together with progressive
proximal muscle weakness (Ref. 166)

LGMD2R: Young adult-onset of progressive LGMDwith mild facial muscle
weakness but severe limb weakness. Incomplete right bundle branch block
and rare ventricular extrasystoles reported (Ref. 133)

Myofribrillar myopathy: age of onset between 10 and 61 years. The
distribution of weakness is distal or both proximal and distal. Muscle
atrophy, mild facial weakness, dysphagia, dysarthria and respiratory
insufficiency can occur (Refs 126, 134)

Dilated cardiomyopathy type 1I (Ref. 167)
Scapuloperoneal syndrome, neurogenic, Kaeser type (Ref. 168)

PLEC1
Plectin

Childhood onset proximal myopathy,
in which the skin may or may not be
involved

LGMD2Q: Early childhood onset of proximal muscle weakness and atrophy
without skin involvement. No cardiac or respiratory involvement, and
intelligence is normal (Ref. 135)

Epidermolysis bullosa simplex with muscular dystrophy (Ref. 169)
Epidermolysis bullosa simplex, Ogna type (Ref. 170)
Epidermolysis bullosa simplex with pyloric atresia (Ref. 171)

3.3. Proteins potentially associated with costameres

FRG1
Protein FRG1

To date, no mutations in the gene FRG1 have been reported to cause
muscular dystrophy; FRG1 transgenic mice develop muscular dystrophy
with features characteristic of the human disease (Ref. 136), but its
relevance in the pathogenesis of FSH is still uncertain
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sarcoplasmic sub-complex, the sarcoglycan (trans-
membrane) complex and the dystroglycan sub-
complex (Ref. 53).

The sarcoplasmic subcomplex. This is composed of pro-
teins present in the sarcoplasm of muscle fibres, mainly
dystrophins, dystrobrevins and syntrophins.

Dystrophin. Dystrophin is a cytoskeletal protein
found on the inner surface of the sarcolemma of skel-
etal muscle (Ref. 54, 55, 56). Its amino-terminal
residue is a cytoplasmic actin-binding domain,
whereas the C-terminal domain is associated with a
transmembrane complex of glycoproteins called dys-
trophin-associated glycoproteins (DAGs), some of
which interact directly with elements of the extracellu-
lar matrix (Ref. 43). Absence or dysfunction of dys-
trophin leads to an increase in the fragility of the
membrane, in turn, weakening the transmission of
mechanical forces through the sarcolemma. The result
is myofibrillar necrosis, leading to a succession of
cycles of degeneration and regeneration, exhausting
the regenerative capacity of the muscle. This is accom-
panied by a loss of myofibrils, muscle being replaced
by fibrous and fatty tissue, as observed in patients
with Duchenne and Becker muscular dystrophies.

Dystrobrevins.Dystrobrevins are expressed in various
types of tissue, including the brain and muscle. The
α-dystrobrevin isoform is expressed in muscle and is
homologous to the cysteine-rich C-terminal domain of
dystrophin (Refs 57, 58). This isoform is directly asso-
ciated with dystrophin and the sarcoglycan complex
(Refs 59, 60). Nevertheless, to date, no myopathies
have been described secondary to mutations in the
α-dystrobrevin gene (Ref. 61), although some cases of
left ventricular noncompaction-1 have been reported
(Ref. 62) (Table 1).

Syntrophin. Syntrophins are a family of cytoplasmic
membrane-associated adaptor proteins directly asso-
ciated with dystrophins and related proteins (Ref. 63).
They serve as a link between the extracellular matrix
and the intracellular downstream targets and cell cyto-
skeleton by interacting with F-actin. They play an
important role in regulating the postsynaptic signal
transduction, sarcolemmal localisation of nNOS,
EphA4 signalling at the neuromuscular junction, and
G-protein-mediated signalling (Ref. 64). There are
three isoforms encoded by different genes expressed
in muscle: α−1, β−1 and β−2 (Refs 65, 66). To
date, only one type of heart disorder (long QT syn-
drome) related to mutations in these genes has been
described, this being attributable to an α−1 syntrophin
mutation (Ref. 67).

Sarcoglycan subcomplex. Sarcoglycans are glycosylated
proteins with a transmembrane domain (Ref. 68) that
needs to be correctly assembled in a complex together
with dystrophin (Ref. 69) to maintain the sarcolemma

(Refs 70, 71). The sarcoglycan subcomplex is com-
posed of the α, β, γ, δ, ε and ζ-sarcoglycan trans-
membrane proteins (Refs 50, 72), of which α and
δ-sarcoglycans are only expressed in muscle tissue,
whereas the rest are more widely distributed
(Ref. 73). This complex has two functions: on the
one hand, it has mechanical and non-mechanical
roles in the interaction between the extracellular
matrix, sarcolemma and cytoskeleton (Ref. 74); and,
on the other hand, it mediates membrane targeting
and the stabilisation of the sarcospan protein. When
mutations result in partial or total loss of sarcoglycans
α, β or γ, sarcospan is also affected (Ref. 75). Four
types of autosomal recessive limb-girdle muscular dys-
trophies have been described secondary to mutations in
genes that code for components of this complex
(Ref. 76) (Table 1).

Dystroglycan subcomplex. Dystroglycans include two
proteins that are part of a complex of glycoproteins
associated with dystrophin. They are both coded by
the same gene,DAG1 (Ref. 77), which, after post-trans-
lational processing, produces a transmembrane protein,
β-dystroglycan and an extracellular protein, α-
dystroglycan.
The dystroglycan complex strengthens the physical

connection between the cytoplasmic proteins that
bind to the actin cytoskeleton and components of the
basement membrane, proteins of the extracellular
matrix that contain globular domains of laminin (for
example, laminin, agrin and neurexin) (Refs 77, 78).
Although genetic dystroglycan deficiency leads

to muscular dystrophy with cognitive impairment
(Ref. 79), several forms of congenital muscular dys-
trophy are the result of abnormalities in the glycosyla-
tion of mucin-like domains of α-dystroglycan, essential
for its correct functioning as a receptor of the extra-
cellular matrix in various types of tissue, including
skeletal muscle and brain (Refs 78, 80) (Table 1).

The vinculin–talin–integrin system

Vinculin and talin are two cytoskeletal proteins that are
essential for the linkage of actin filaments to the plasma
membrane (Ref. 81), whereas integrins are heterodi-
mers composed of two subunits, α and β (Ref. 82),
involved in the cascade of intracellular signalling
(Ref. 83).

Vinculin. Vinculin is associated with the cytoplasmic
side of the plasma membrane, interacting with talin
and α/β-catenins (together with cadherin) (Ref. 84,
85, 86). In addition, there is evidence to suggest that
vinculin plays a critical role in the regulation of integrin
clustering, force generation and strengthening of adhe-
sion (Ref. 87). Mutations in the gene that codes for vin-
culin lead to dilated cardiomyopathy type 1W and to
familial hypertrophic cardiomyopathy-15 (Refs 88,
89), but have not yet been found to cause disorders
affecting skeletal muscle (Table 1).
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Talin. Talin is a dimeric protein that contains different
domains for binding to the β-integrin subunits,
F-actin, Wech, H-Ras, layilin, PIPK, focal adhesion
kinase (FAK), actin, vinculin and muscle-specific
α-synemin (Ref. 90). Hence, talin links integrins with
cytoskeletal actin (Ref. 91), being essential for the
structural integrity of the attachment of cells to the
extracellular matrix (Ref. 92). As well as this structural
function, talin modulates ligand binding to integrins
and is involved in signal transduction, recruiting
signalling proteins, such as FAK and phosphatidylino-
sitol-(4)-phosphate 5-kinase type Iγ (PIPKIγ) to focal
adhesions. Talin is coded by two genes that code for
two isoforms (Tln1 and Tln2), with 74% sequence
identity. Tln 1 is ubiquitous while Tln 2 is expressed
in fewer tissues, mainly the heart, brain and skeletal
muscle (Ref. 91). No disorders are known to be asso-
ciated with mutations in either of these isoforms.

Integrin. The vinculin–talin–integrin system includes
various transmembrane heterodimeric receptors that
play a very important role in cell adhesion (Ref. 82).
They link the extracellular matrix to the actin cyto-
skeleton and facilitate the bidirectional transmission
of signals between the extracellular matrix and the
cytoplasm (Refs 83, 93).
Integrins are connected to actin filaments through

talin, vinculin and other related proteins, such as
α-actinin, integrin-linked kinase (ILK), filamin and
tensin (Ref. 94). As well as their structural function,
integrins recruit signalling proteins for the transduction
of mechanical stimuli through FAK, melusin, paxillin,
src, cas and PIPKI (Ref. 95).
Integrins play an important role in the process of

muscular differentiation and, in particular, are media-
tors of cell adhesion and migration (Ref. 6). Various
different heterodimers have been identified, composed
of α and β chains. The α/β combination determines
the binding specificity of the ligand of the integrin het-
erodimer for various different proteins of the extra-
cellular matrix, including fibronectin, laminin and
collagens. The most common isoforms in skeletal
muscle of adults are α7B and β1D, the latter being
found with vinculin in skeletal and cardiac muscle
(Refs 96, 97). The affinity of integrin for its ligands
depends on its activation, this usually occurring
through the cytoplasmic tail of β-integrins that can be
regulated by various biochemical signalling pathways
(Ref. 98).
During myogenesis, two isoforms of integrin 1β are

expressed. The isoform 1A is expressed in myoblasts
and is under-expressed during tissue formation,
whereas isoform 1D is expressed during fusion and
its expression increases during the maturation of myo-
tubes, completely displacing the isoform 1A in mature
myotubes (Ref. 96).
Two types of congenital muscular dystrophy have

been found to be because of mutations in genes
coding for integrins, one to mutations in ITGA7

(Ref. 99), and the other, to mutations in ITGA9
(Ref. 100) (Table 1).
On the other hand, as previously mentioned, integ-

rins interact with collagens and it is worthwhile to
underline that collagen VI plays a fundamental role in
costameric function maintenance, given that proteins
essential for mechanotrasduction are altered in collagen
VI null mice and collagen VI myopathy (Refs 101, 102,
103, 104, 105) (Table 1).

Other proteins associated with costameres

As well as the aforementioned complexes, other pro-
teins are indirectly involved in the structure of the cost-
amere, either by being associated with integrins, or by
being part of or associated with IFs.

Integrin-associated proteins. These include a complex
formed by ILK, particularly interesting cysteine- and
histidine-rich protein (PINCH) and parvin, the IPP
complex (Ref. 106).
Regarding the proteins in the IPP complex, ILK

regulates integrin-mediated signalling, and PINCH
and parvins are adaptor proteins. ILK was identified
in 1996 among other proteins that bound to the
cytoplasmic region of integrin β1 (Ref. 107). It is a
serine–threonine protein kinase that, as well as
binding to PINCH and parvins, also binds to the cyto-
plasmic regions of integrins β1 and β3, regulating
integrin-mediated transduction signal (Refs 107, 108).
PINCH has two isoforms, PINCH1 and 2 (Refs 109,
110) and together with ILK, is essential for controlling
the change of shape, mobility and survival of cells
(Ref. 111). Parvins are a family of proteins composed
of α-parvin (also known as actopaxin and calponin
homology-containing ILK-binding protein), β-parvin
(affixin) and γ-parvin that bind to ILK through a
calponin-homology domain (Refs 112, 113, 114).
Another integrin-associated protein is melusin, a

protein coded by the ITGB1BP2 gene. Melusin binds
to the cytoplasmic domain of the integrin β1 subunit
in costameres, acting as a specific biomechanical
sensor of signal transduction (Ref. 115). In the
cardiac muscle, the effect of melusin is to prevent
heart failure under biomechanical stress (Ref. 116).
Some mutations in the genes coding for proteins of

this complex have been associated with muscular dys-
trophies (Ref. 117) and with heart disease (Refs 118,
119), (Table 1).
Another protein closely associated with integrins is

FAK. The phosphorylation of this protein activates
hypertrophic signalling through Akt, extracellular
signal-regulated kinase 1/2 and Jun N-terminal
kinase/c-Jun pathways. The FAK signalling pathway
regulates the expression of MEF2 transcription
factors, which in turn regulate the expression of sarco-
meric proteins (Ref. 120) and it has been confirmed that
FAK inhibition results in an abnormal maturation of
costameres and myofibrils (Ref. 121).
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Finally, kindlin is a protein that binds directly to
β-integrins and ILK. It has three isoforms (kindlin 1,
2 and 3) in vertebrates, although the most widely
expressed isoform in cardiac and skeletal muscle is
kindlin 2 (Ref. 122). Kindlin is found at costameres
and plays an important role in myoblast differentiation
in vitro (Ref. 123).

Desmin and Plectin. Desmin is the most important
protein in IFs for the organisation of the costamere in
the muscle (Ref. 124). It surrounds Z-discs and links
the contractile apparatus with the sarcolemma, cyto-
plasmic organelles and the nucleus (Ref. 125) provid-
ing structural solidity and integrity to the cell during
force transmission and mechanochemical signalling
(Ref. 126).
Plectin, a protein associated with the cytoskeleton, is

abundantly expressed in various types of tissue and cell
types (Refs 127, 128). It has been suggested that it may
interact directly with actin filaments, microtubules,
microtubule-associated proteins, α-spectrin, and integ-
rin β4, as well as most IFs (Refs 129, 130, 131).
Myofibre integrity depends on the desmin network

targeting Z-discs and costameres via plectin isoforms.
Among the different isoforms of plectin, 1 and 1f are
localised at costameres. Plectin deficiency results in
desmin detaching from Z-discs, costameres, mytochon-
dria and nuclei; depending on which plectin isoform is
lacking, desmin aggregates have a distinct morphology
and form in distinct cytoplasmic compartments
(Ref. 132).
Desmin deficiency leads to limb-girdle muscular

dystrophy, LGMD2R (Ref. 133) and an allelic variant
of myofibrillar myopathy (Ref. 134), whereas plectin
deficiency produces LGMD 2Q (Ref. 135) (Table 1).

Protein potentially associated with costameres.
Facioscapulohumeral muscular dystrophy region gene
1 (FRG1) protein is one of a group of proteins whose
localisation and function are still to be clearly
defined. There is evidence that it participates in the
processing of RNA (Ref. 136) and it may be involved
in F-actin bundling in Caenorhabditis elegans
(Ref. 137). It has been suggested that FRG1 in
C. elegans is a multi-function protein present in
various subcellular niches, but primarily in nucleoli
and dense bodies. In this organism, the most important
function of dense bodies is transduction of mechanical
forces, essentially by anchoring sarcomeric actin to the
extracellular matrix; that is, they are structures with a
similar function to that of the combination of Z-discs
and costameres in vertebrates (Refs 137, 138).
Therefore, as well as in C. elegans, FRG1 could be
involved in costameres in vertebrates.

Summary
The structure and role of costameres and their involve-
ment in the pathophysiology of skeletal muscular disor-
ders are still not well understood. Given that this system

includes many molecules closely associated spatially
and with two types of function (structural support
and signal transduction), it is likely that abnormalities
in any of the components have an impact on the stabil-
ity of the whole system, with consequences for the
structure of the membrane, or the functionality of the
contractile apparatus, or both at the same time. This
has been confirmed in dystrophinopathies, in which
the absence of dystrophin leads to the disappearance
of dystoglycans/sarcoglycans, and in sarcoglycanopa-
thies, in which the lack of the protein as a result of
mutation leads to a secondary reduction or disappear-
ance of the remaining sarcoglycans. Moreover, a
similar phenomenon has also been reported when
contactin-1 gene is mutated, as this results in reduced
expression of β2-syntrophin and α-dystrobrevin
(Ref. 139).
Regarding potential therapies for myopathic pro-

cesses because of defects in costamere proteins, differ-
ent approaches have been widely tested. However,
clinical trials have only been performed for a few of
them. In the case of Duchenne muscular dystrophy
(DMD), for example, molecular-based pharmacologic
therapies to correct gene products have been applied
(Refs 140, 141). In sarcolgycanopathies, an adeno-
associated virus has been used to transfect the exogen-
ous gene (Ref. 142) and in collagen VI myopathies,
compounds that modulate the activity of the mitochon-
drial permeability transition pore have been assessed
(Refs 143, 144). Unfortunately, just a few of these
approaches showed the sought outcome so far.
Further research is required on selective silencing

and at different stages in the processes of myogenesis
and differentiation of skeletal muscle in physiological
and pathological conditions to clearly establish the
role of these structures in skeletal muscle. Current
knowledge suggests that these proteins could be thera-
peutic targets for preventing the ‘de-structuring’ of the
sarcolemma that leads to the degeneration of myofibres
in patients with muscular dystrophy.
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